Regulation of Organelle Acidity

نویسندگان

  • Michael Grabe
  • George Oster
چکیده

Intracellular organelles have characteristic pH ranges that are set and maintained by a balance between ion pumps, leaks, and internal ionic equilibria. Previously, a thermodynamic study by Rybak et al. (Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674-687) identified the key elements involved in pH regulation; however, recent experiments show that cellular compartments are not in thermodynamic equilibrium. We present here a nonequilibrium model of lumenal acidification based on the interplay of ion pumps and channels, the physical properties of the lumenal matrix, and the organelle geometry. The model successfully predicts experimentally measured steady-state and transient pH values and membrane potentials. We conclude that morphological differences among organelles are insufficient to explain the wide range of pHs present in the cell. Using sensitivity analysis, we quantified the influence of pH regulatory elements on the dynamics of acidification. We found that V-ATPase proton pump and proton leak densities are the two parameters that most strongly influence resting pH. Additionally, we modeled the pH response of the Golgi complex to varying external solutions, and our findings suggest that the membrane is permeable to more than one dominant counter ion. From this data, we determined a Golgi complex proton permeability of 8.1 x 10(-6) cm/s. Furthermore, we analyzed the early-to-late transition in the endosomal pathway where Na,K-ATPases have been shown to limit acidification by an entire pH unit. Our model supports the role of the Na,K-ATPase in regulating endosomal pH by affecting the membrane potential. However, experimental data can only be reproduced by (1) positing the existence of a hypothetical voltage-gated chloride channel or (2) that newly formed vesicles have especially high potassium concentrations and small chloride conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responsive hetero-organelle partition conferred fluorogenic sensing of mitochondrial depolarization.

Malfunctioning organelles are often difficult to probe with classical organelle-homing sensors owing to disruption of physiological organelle-probe affinity. We herein report the use of a responsive hetero-organelle partition and signal activable probe (RC-TPP) for detecting mitochondrial depolarization, a pathologically relevant event featuring loss of the electrical potentials across the mito...

متن کامل

Cystic fibrosis transmembrane conductance regulator and H+ permeability in regulation of Golgi pH.

This paper reviews experiments from this lab that have tested the hypothesis that pH of the Golgi (pH(G)) of cystic fibrosis (CF) airway epithelial cells is alkaline compared to normal, that this altered pH affects sialyltransferase and other Golgi enzymes controlling biochemical composition of the plasma membrane and that altered surface biochemistry increases bacterial binding. We generated a...

متن کامل

Proton leak and CFTR in regulation of Golgi pH in respiratory epithelial cells.

Work addressing whether cystic fibrosis transmembrane conductance regulator (CFTR) plays a role in regulating organelle pH has remained inconclusive. We engineered a pH-sensitive excitation ratiometric green fluorescent protein (pHERP) and targeted it to the Golgi with sialyltransferase (ST). As determined by ratiometric imaging of cells expressing ST-pHERP, Golgi pH (pH(G)) of HeLa cells was 6...

متن کامل

The Regulation of Respiration Iv. Tissue Acidity, Blood Acidity and Pulmonary Ventilation. a Study of the Effects of Semipermeability of Membranes and the Buffering Action of Tissues with the Continuous Method of Recording Changes in Acidity~

Several years ago experiments by one of us pointed to a lack of correspondence between blood acidity and pulmonary ventilation, which seemed to contradict the generally accepted view that the acidity of the arterial blood controlled respiration. These experiments (1) led to the statement that “The conception that the hydrogen ion concentration of the arterial blood regulates respiration is anal...

متن کامل

Molecular mechanisms of organelle biogenesis and related metabolic diseases.

Organelle biogenesis is regulated by transcriptional networks that modulate expression of specific genes encoding organellar proteins. Structural and functional specificity of organelles requires not only the transcription of specific genes and translation of resulting mRNAs, but also the transfer of encoded polypeptides to their site of function through signaling peptides. A defect in targetin...

متن کامل

A high molecular mass non-muscle tropomyosin isoform stimulates retrograde organelle transport.

Although non-muscle tropomyosins (TM) have been implicated in various cellular functions, such as stabilization of actin filaments and possibly regulation of organelle transport, their physiological role is still poorly understood. We have probed the role of a high molecular mass isoform of human fibroblast TM, hTM3, in regulating organelle transport by microinjecting an excess amount of bacter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2001